A Continuous Perspective on Graph Neural Networks

Ben Chamberlain

Message Passing GNNs

- Most GNNs are Message Passing GNNs
- Message Passing GNNs interleave two steps
 - 1. Propagation along edge (message passing)
 - 2. Shared feature transformation by a neural network

What's Wrong with (Message Passing) GNNs?

- Deep GNNs ⇒ over-smoothing
- Input graph = computational graph ⇒ bottlenecks & "over-squashing"
- Graph & features incompatible structure ("heterophily") ⇒ poor performance
- Limited expressive power ⇒ cannot detect simple structures such as cycles or cliques

Oversmoothing

							_		- 1 0
INIOUGI	ARMA	0.629	0.860	0.608	0.305	0.004			1.0
	ChebGCN	0.557	0.756	0.138	0.024	0.018			- 0.8
	DNA	0.665	0.352	0.347	0.172	0.096			
	FeaSt	0.778	0.770	0.677	0.182	0.072			- 0.6
	GAT	0.794	0.704	0.232	0.047	0.005			0.4
	GCN	0.796	0.765	0.714	0.602	0.289			- 0.4
	GGNN	0.661	0.078	0.021	0.033	0.039			- 0.2
	GraphSAGE	0.925	0.816	0.632	0.303	0.053			
	HighOrder	0.629	0.145	0.023	0.004	0.012			- 0.0
	HyperGraph	0.828	0.742	0.493	0.046	0.023			
		2	3 #N	4 Iodel Lav	5 ver	6			0.2
#Model Layer									

Jode

Chen 2020

Message Passing is Information Diffusion

Laplacian diffusion on graphs:

 $X_t = L X_{t-1}$

 $\mathbf{E}(\mathbf{X}) = \frac{1}{v} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{N}_i} \|\mathbf{X}_i - \mathbf{X}_j\|^2$

Pierre-Simon Laplace

Diffusion in Image Processing

 $\frac{\partial}{\partial t}x = c\Delta x$

$$\frac{\partial}{\partial t}x = \operatorname{div}\left[\frac{1}{1 + (|\nabla x|/\lambda)^2} \nabla x\right]$$

Non-homogeneous diffusion

Homogeneous diffusion

Perona, Malik 1990; Sochen et al. 1998; Tomasi, Manduchi 1998; Weickert 1998; Buades et al. 2005

Variational methods in image processing – 50 frame diffusion

Gaussian:

g(x) = c

Perona & Malik: $g(|\nabla x|) = \frac{1}{1 + (|\nabla x|/\lambda)^2}$

Diffusion Iteration 1

Attentional diffusivity for GNNs

Kipf 2017, Chamberlain 2021a, Bodner 2022

For more on our work on sheaves see: Aleksa Gordic's YouTube channel The AI Epiphany https://www.youtube.com/c/TheAIEpiphany

Spatial discretisation: Continuous to Discrete

$$\frac{\partial x(u,t)}{\partial t} = \operatorname{div}[\nabla x(u,t)]$$
(1)

gradient - flow along edges

divergence - aggregation of edges

 $(\nabla X)_{uv} = x_u - x_v$

 $\dot{\boldsymbol{X}}(t) = (\boldsymbol{A}(\boldsymbol{X}(t)) - \boldsymbol{I})\boldsymbol{X}(t) \quad (2)$

Temporal discretisation

Neural ODEs:

ResNet:

$$\boldsymbol{h}_{t+1} = \boldsymbol{h}_t + f(\boldsymbol{h}_t, \boldsymbol{\theta}_t)$$

Dynamics:

$$\frac{d\boldsymbol{h}(t)}{dt} = f(\boldsymbol{h}_t, \boldsymbol{\theta}_t, t)$$

ODE Solvers:

 $\mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^T f(\mathbf{z}(t), t, \theta) dt = \text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)$

Chen et al. 2019; Haber et al. 2019, Xhonneux, 2020.

Simple GNN by discretising time in the graph diffusion equation:

 $\dot{\boldsymbol{X}}(t) = \left(\boldsymbol{A}(\boldsymbol{X}(t)) - \boldsymbol{I}) \, \boldsymbol{X}(t) \right) \quad (2)$

Explicit Euler temporal discretisation

$$X(k+1) = X(k) + \tau \big[A \big(X(k) \big) - I \big] X(k)$$

Set time step $\tau = 1$ get simplified GCN

X(k+1) = A(X(k))X(k)

without feature channel mixing and non-linearities

Better ODE Solvers

Multi-step methods:

$$x_{n+1} + \sum_{i=1}^{s} \alpha_i x_{n+1-i} = \tau \sum_{i=0}^{s} \beta_i f_{n+1-i}$$

Adaptive step-size solvers:

order p:

 $x_p(\tau)$

 $x_{p-1}(\tau)$

order p-1:

error:

 $\varepsilon = x_p(\tau) - x_{p-1}(\tau)$

tolerance:

 $etol = atol + rtol * \max(|x_0|, |x_1|)$

If $\varepsilon > etol$ then decrease step-size τ

GRAND depth analysis:

Figure 2. Performance of architectures of different depth.

Decoupling the Input graph and the computational graph

Spatial discretisation: Graph Rewiring

Decouple input graph from information propagation graph

- Neighbourhood sampling (GraphSAGE)¹
- Multi-hop filters (SIGN)²
- Complete graph³
- Topology diffusion (DIGL)⁴

Implicit Solvers

Implicit Versus Explicit Euler's Methods

• Explicit Euler's Method: $\frac{dy}{dx} = f(x, y)$

$$y_{i+1} = y_i + f(x_i, y_i) \cdot h$$

• Implicit Euler's Method: $\frac{dy}{dx} = f(x, y)$

$$y_{i+1} = y_i + f(x_{i+1}, y_{i+1}) h_{\text{chapter 2}}$$

Images as embedded manifolds

$$\frac{\partial}{\partial t}\mathbf{x} = -\mathrm{div}(a(\mathbf{x})\nabla\mathbf{x})$$

Non-linear diffusion

Non-Euclidean diffusion

Intro to positional encodings

- Popularized in the transformer
- Now widely used in GNNs
- Many options
 - Random node features¹
 - Graph Laplacian eigenvectors²
 - Graph substructure counts³
 - Bags of subgraphs⁴

¹Sato et al. 2020; ²Vaswani et al. 2017; Qiu et al. 2020; Dwivedi et al. 2020; ³Bouritsas, Frasca, et B. 2020; ⁴Bevilacqua, Frasca, Lim, et B., Maron 2021

What to do with the positional encodings

- In computer vision they are just for edge detection and then thrown away
- The graph approach is more elegant as the evolved positional encodings can be used to rewire the graph?
- Why rewire the graph?
 - Decouples the given and computational graph can remove bottlenecks or increase performance and scalability

¹Hamilton et al. 2017; ²Rossi, Frasca, et B. 2020; ³Alon, Yahav 2020; ⁴Klicpera et al. 2019; ⁵Wang et B 2018; Kazi, Cosmo, et B. 2020

- Graph with positional and feature node coordinates z_i = (u_i, x_i)
- Graph Beltrami flow

$$\frac{\partial}{\partial t} \mathbf{z}_i = \sum_{j:(i,j)\in E} a(\mathbf{z}_i, \mathbf{z}_j)(\mathbf{z}_j - \mathbf{z}_i)$$

feature coordinates

- Graph with positional and feature node coordinates z_i = (u_i, x_i)
- Graph Beltrami flow

$$\frac{\partial}{\partial t} \mathbf{z}_i = \sum_{j:(i,j)\in E} a(\mathbf{z}_i, \mathbf{z}_j)(\mathbf{z}_j - \mathbf{z}_i)$$

Evolution of \mathbf{x} = feature diffusion

Chamberlain b. 2021

- Graph with positional and feature node coordinates z_i = (u_i, x_i)
- Graph Beltrami flow

$$\frac{\partial}{\partial t} \mathbf{z}_i = \sum_{j:(i,j)\in E} a(\mathbf{z}_i, \mathbf{z}_j)(\mathbf{z}_j - \mathbf{z}_i)$$

Evolution of \mathbf{x} = feature diffusion

- Graph with positional and feature node coordinates z_i = (u_i, x_i)
- Graph Beltrami flow

$$\frac{\partial}{\partial t} \mathbf{z}_i = \sum_{j:(i,j)\in E} a(\mathbf{z}_i, \mathbf{z}_j)(\mathbf{z}_j - \mathbf{z}_i)$$

- Evolution of \mathbf{x} = feature diffusion
- Evolution of **z** = graph rewiring

Chamberlain et B. 2021

- Graph with positional and feature node coordinates z_i = (u_i, x_i)
- Graph Beltrami flow

$$\frac{\partial}{\partial t} \mathbf{z}_i = \sum_{j:(i,j)\in E'} a(\mathbf{z}_i, \mathbf{z}_j)(\mathbf{z}_j - \mathbf{z}_i)$$

- Evolution of \mathbf{x} = feature diffusion
- Evolution of **z** = graph rewiring

GNN Architectures as instances of BLEND

$\mathbf{Z}^{(k+1)} = \mathbf{Q}(\mathbf{Z}^{(k)})\mathbf{Z}^{(k)}$

Method	Evolution	Diffusivity	Graph	Discretisation
<u>ChebNet</u>	Х	Fixed A	Fixed <i>E</i>	Explicit Fixed step
GAT	X	A(X)	Fixed E	Explicit Fixed step
MoNet	X	A(U)	Fixed E	Explicit Fixed step
Transformer	X	A (U , X)	Fixed $E = V^2$	Explicit Fixed step
DIGL	X	A(X)	Fixed $E(\mathbf{U})$	Explicit Fixed step
DGCNN	X	A (X)	Adaptive $E(\mathbf{X})$	Explicit Fixed step
BLEND	U , X	A (U , X)	Adaptive <i>E</i> (U)	Explicit Adaptive step , Implicit

Beltrami Flow, diffusion time=0

GNNs as Interacting Particle Systems

Interacting Particle Approach

9

- Associate positions with node embeddings
- Learning generates node trajectories
- Trajectories are constrained by an energy and described by a differential equation (the gradient flow of the energy)

Graph coupling

Damped Oscillator

Allen-Cahn Message Passing (ACMP)

Wang et al. 22

The Allen–Cahn potential introduces repulsive forces that prevent oversmoothing

Gradient Flow Framework (GRAFF) Di Giovanni, Rowbottom et al. 22

The gradient flow of a learnable energy can induce repulsive forces that prevent oversmoothing

$$\mathcal{E}^{\text{tot}}(\mathbf{F}) := \frac{1}{2} \sum_{i} \langle \mathbf{f}_{i}, \mathbf{\Omega} \mathbf{f}_{i} \rangle - \frac{1}{2} \sum_{i,j} \bar{a}_{ij} \langle \mathbf{f}_{i}, \mathbf{W} \mathbf{f}_{j} \rangle \equiv \mathcal{E}_{\mathbf{\Omega}}^{\text{ext}}(\mathbf{F}) + \mathcal{E}_{\mathbf{W}}^{\text{pair}}(\mathbf{F})$$

Damping

Gradient flow gives diffusion with channel mixing and attractive / repulsive forces

$$\dot{\mathbf{F}}(t) = -\nabla_{\mathbf{F}} \mathcal{E}^{\text{tot}}(\mathbf{F}(t)) = -\mathbf{F}(t)\mathbf{\Omega} + \bar{\mathbf{A}}\mathbf{F}(t)\mathbf{W}$$

Onsager diffusion with symmetric W

Bottlenecks and Oversquashing

Over-squashing & Bottlenecks

Long-distance dependency + Fast volume growth = Over-squashing

Alon, Yahav 2020

Characterisation of Over-squashing in GNNs

Multilayer MPNN-type GNN of the form

$$x_i^{(\ell+1)} = \phi_\ell \left(x_i^{(\ell)}, \sum_{j=1}^n \hat{a}_{ij} \psi_\ell \left(x_i^{(\ell)}, x_j^{(\ell)} \right) \right)$$

• $|\nabla \phi_{\ell}| \leq \alpha$ and $|\nabla \psi_{\ell}| \leq \beta$ for $\ell = 0, 1, ..., L$.

Lemma 1 (sensitivity): Let node *s* be geodesically $d_G(i, s) = r + 1$ away from node *i*. Then

$$\left|\frac{\partial h_i^{(r+1)}}{\partial x_s}\right| \le (\alpha\beta)^{r+1} \left(\widehat{\mathbf{A}}^{r+1}\right)_{is}$$

y

Characterisation of Over-squashing in GNNs

Multilayer MPNN-type GNN of the form

$$x_i^{(\ell+1)} = \phi_\ell \left(x_i^{(\ell)}, \sum_{j=1}^n \hat{a}_{ij} \psi_\ell \left(x_i^{(\ell)}, x_j^{(\ell)} \right) \right)$$

• $|\nabla \phi_{\ell}| \leq \alpha$ and $|\nabla \psi_{\ell}| \leq \beta$ for $\ell = 0, 1, ..., L$.

Lemma 1 (sensitivity): Let node *s* be geodesically $d_G(i, s) = r + 1$ away from node *i*. Then

$$\left|\frac{\partial x_i^{(r+1)}}{\partial x_s}\right| \le (\alpha\beta)^{r+1} \left(\widehat{\mathbf{A}}^{r+1}\right)_{is}$$

Topping, di Giovanni, et B. 2021

It's the graph structure ("bottleneck") to blame!

information propagation

y

Characterisation of Over-squashing in GNNs

Multilayer MPNN-type GNN of the form

$$x_i^{(\ell+1)} = \phi_\ell \left(x_i^{(\ell)}, \sum_{j=1}^n \hat{a}_{ij} \psi_\ell \left(x_i^{(\ell)}, x_j^{(\ell)} \right) \right)$$

• $|\nabla \phi_{\ell}| \leq \alpha$ and $|\nabla \psi_{\ell}| \leq \beta$ for $\ell = 0, 1, ..., L$.

Lemma 1 (sensitivity): Let node *s* be geodesically $d_G(i, s) = r + 1$ away from node *i*. Then

$$\left|\frac{\partial x_i^{(r+1)}}{\partial x_s}\right| \le (\alpha\beta)^{r+1} \left(\widehat{\mathbf{A}}^{r+1}\right)_{is}$$

It's the graph structure ("bottleneck") to blame!

Topping, di Giovanni, et B. 2021

Pathological example: binary tree $(\widehat{\mathbf{A}}^{r+1})_{is} = \frac{1}{2} \cdot 3^{-r}$

Graph Curvature

Ricci Curvature on Manifolds

Spherical (>0)

Euclidean (=0)

"geodesic dispersion"

Hyperbolic (<0)

Ricci Curvature on Graphs

y

Sectional curvature defined on edges. Ollivier curvature:

$$\kappa(x,y) := 1 - \frac{W_1(m_x,m_y)}{d(x,y)},$$

Ricci Curvature on Graphs

y

Sectional curvature defined on edges. Ollivier curvature: $\kappa(x, y) := 1 - \frac{W_1(m_x, m_y)}{d(x, y)}$

Forman 2003; Ollivier 2007; Topping, di Giovanni, et B. 2021

Balanced Forman Curvature

Ollivier curvature is expensive to calculate due to the optimal transport map

Balanced Forman Curvature of edge $i \sim j$ in simple unweighted graph Ric(i, j) = 0 if $min\{d_i, d_j\} = 1$ and otherwise

$$\operatorname{Ric}(i,j) = \frac{2}{d_i} + \frac{2}{d_j} + 2 \frac{|\sharp_{\Delta}(i,j)|}{\max\{d_i,d_j\}} + \frac{|\sharp_{\Delta}(i,j)|}{\min\{d_i,d_j\}} + \frac{|\sharp_{\Delta}(i,j)|}{\min\{d_i,d_j\}} + \frac{\gamma_{\max}^{-1}}{\max\{d_i,d_j\}} \left(|\sharp_{\Box}^i(i,j)| + |\sharp_{\Box}^j(i,j)| \right) - 2$$

$$\operatorname{Pegree of } i$$
Neighbours of i forming a 4-cycle

based at i-j (w/o diagonals)

Ricci Flow

Ricci flow

۲

Ricci flow: "diffusion of the Riemannian metric"

 $\frac{\partial g_{ij}}{\partial t} = R_{ij}$

Evolution of a manifold under Ricci flow

Curvature- vs Diffusion-based Rewiring

Topping, di Giovanni, et B. 2021; Klicpera et al. 2019 (DIGL)

Announcing the ICLR 2022 Outstanding Paper Award Recipients

YEJIN CHOI / 2022 Conference / awards ICLR 2022

By ICLR 2022 Senior Program Chair Yan Liu and Program Chairs Chelsea Finn, Yejin Choi, Marc Deisenroth

Outstanding Paper Honorable Mentions

Understanding over-squashing and bottlenecks on graphs via curvature

By Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, Michael M. Bronstein

For an intro to the paper see: Aleksa Gordic's YouTube channel The Al Epiphany https://www.youtube.com/c/TheAlEpiphany

Summary

۲

٠

- GNNs as differential equations layers and continuous time
 - Stability conditions
- Architectures based on numerical solvers
- Control smoothing
- **Evolving the underlying space and rewiring**
- Graph Curvature
 - Decouping the input and computational graph
 - Remove bottlenecks

Thank You and Questions

